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The fuzzy Potts model 
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Abstract. We consider the ferromagnetic q-state Pom model on the d-dimensional lattice Z", 
d 2 2. Suppose that the Po- variables ( p x , x  E Zd) are distributed in one of the q low- 
temperature phases. Suppose that n # 1, p divides q. Partitioning the single-site state space 
into n equal puts KI, . . . , Kn. we obtain a new random field a = (ar, x E Z") by defining fuay '  
variables U, = CI if px E Ka, a = 1. . . . , n. We investigate the state induced on these fuzzy 
variables. first we look at the conditional distribution of pr given all values ay, y E Zd. We find 
that below the coexistence point all versions of this conditional distribution are non-quasilocal 
on a set of configurations which canies positive measure. Then we look at the conditional 
distribution of ox given all values ay, y # 5.  If the system is not at the coexistence point of a 
fim-order phase transition, there exists a version of this conditional distribution that is almost 
surely quasilocal. 

1. Introduction 

The q-state Potts 'model is a generalization of the king model which coincides with it 
for q = 2. It shows a number of well appreciated features sometimes similar (e.g. in its 
stochastic-geometric representation) and sometimes quite dissimilar (e.g. in the nature of 
the phase transition for large q) to the king model. One of the popular applications of the 
Potts model is in the theory of Gibbs sampling and image restoration. It is then sometimes 
assumed a priori that the undistorted multi-colour image is distributed according to the 
Potts Hamiltonian. 

In this paper we are interested in the (distorted) two-colour (or more generally n- 
colour) image obtained from the original one in lower resolution. This new 'fuzzy' image 
is composed of variables that may, for example, be king-like (two possible values per site) 
but their joint distribution, as inherited from the original variables, may he quite different 
from the king model. In fact, it may be the case that the induced measure is not a Gibbs 
measnre for any quasilocal interaction. A similar example was treated in [l], where the 
original model was the massless harmonic crystal and the fuzzy variables were binary, 
specifying at each site the sign of the Gaussian spins. There is also a connection with 
renormalization group transformations (RG) in the sense that both in the RG and the fuzzy 
description one loses information about the considered measures. It is known that RG can 
send Markovian measures into non-Gibbsian measures, lacking the quasilocality property. 
To more precise, we take any one of the q low-temperature phases of the Potts model. For 

t E-mail: Christian.Maesefys.kuleuven.ac.be 
$ Ondenoehleider NFWO Belgium. 
I E-mail: Koen.VandeVelde@fys.kuleuven.ac.be 
11 Aspinnr "0 Beldum. 

0305-4470/95/154261+l0$19.50 @ 1995 1OP Publishing Ltd 4261 



4262 

n # 1, q we investigate the distribuiton induced by it on the variables 0; specifying to 
which of the n families the Potts variable belongs at each site x .  We are interested in some 
conditional distributions for this model and especially in the question of quasilocality. 

First we look at the distribution of the value of the Potts variable at some site x when 
we are given the family of which each Potts variable belongs. We find that below the 
coexistence point all versions of the conditional distribution are almost surely non-quasilocal. 
This means that the expectation value of a Potts variable if we are given the family for 
each variable is very sensitive to the knowledge as to which family the variables far away 
belong. This is not only relevant for image restoration: from a statistical mechanics point of 
view it is interesting to see that the partial information one is given about the system does 
not block the phase transition. This indicates a form of robustness for the phase transition. 

Then we look at the conditional distribution of 0; given all values uy, y # x .  If the 
system is not at the coexistence point of a first-order phase transition, there exists a version 
of this conditional distribution that is almost surely quasilocal. This does not mean that the 
induced measure is a Gibbs measure, but it comes close to it [2,3].  for a Gibbs measure 
there exists a version of this conditional distribution that is quasilocal everywhere [4,5,2]. 
In the proofs we make use of the relation of these conditional distributions to those in 
edge-diluted Potts models and of the random cluster representations for these models. 

The following section contains the model and the main results. Section 3 reviews the 
relation of the Potts model with the random cluster model and extends this to the fuzzy 
Potts model. Section 4 is devoted to the proof of the main results. 

2. Model and main results 

In the q-state Potts model on the lattice Zd, d > 2, one first assigns to each lattice 
site x a Potts variable ,ox with uniform a priori distribution in the singlesite state space 
K = {l, . . . , q ] .  The energy of a configuration p.= (px, x E Z d )  is formally given by 
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. 

WP) = - J b , p Y  (2.1) 
(X.Y) 

where J > 0 is the nearest-neighbour coupling and the sum is over all nearest-neighbour 
pairs. &,h(= 1 if a = b and = 0 if a # b) is the Kroneckerdelta. Let AN = [-N, NIdnZd 
be a cubic region centred around the origin o. Let 1 be the Potts configuration in which 
1, = 1, x E Zd. The Potts measure at inverse temperature B > 0 with n boundary conditions 
outside AN is the probability measure on KZd giving weight 

1 
P ~ , ~ ( P )  = 7 exp{-B[X(p) - ~ ( m  (2.2) 

2N.P 

to a configuration p coinciding with outside VN and PL,<(p) = 0 otherwise. We refer to 
[6] for a discussion of the infinite volume limit limNtm PN,# = P/ . We call this limiting 
measure ‘one phase’, because it is an extrema1 translation invariant measure and because 
there is a critical value flc = 8 ( q ,  J )  so that for all B > BE (and for large q also at pC) 
P;[po = 11 > l/q. Moreover, in this regime there is, with P/ probability one, an infinite 
nearest-neighbour connected cluster of sites on which the Potts variables take the value 1 
[71. 

Suppose now that there is an integer n f 1, q dividing q.  We divide the singlesite 
state space K into n disjoint parts K I ,  . . . , Kn, each containing q / n  elements. This allows 
us to define fuzzy variables 

(2.3) 0, = a: if ,ax E K. fora: = 1, ..., n. 
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We can thus write px = (ox, zx), where 0; E {l, . . . , n )  indicates which family or class px 
is in and s, E {I,  . . . , q / n ] .  For convenience we assume that 0; = ~ r ,  = 1 corresponds to 
px = 1. Obviously any continuous function of u ( p )  = U = (ux ,x  E - Z ~ )  is a continuous 
function of the Potts configuration p and we can consider the infinite volume measure Qi 
onS2=(1,.. . ,n]zd definedby 

= $ ( E )  
for any cylinder set A corresponding to the U variables and 

( p  E Kzd[u(p) E A} B 

is a cylinder set for the p variables. 
For a configuration q E Q define q~ = [qx  : x E A]. Let us denote by 3m the u-algebra 

of events depending only on the values of the U variables. 3: denotes the sub-o-algebra of 
events in FV not depending on 0;. We recall the definition of pointwise quasilocality [3]. 

Definition 1. We call a real-valued function g on Q quasilocal at q iff for any E z 0, there 
exists a finite region A c Zd such that 

SUP lg(i+) -g(dl x E. (2.4) 
tcn: 

h = n h  

Defulition 2. Let P be a probability measure on a probability space (Q, a. Let A be a 
sub-o-algebra of 3 and f, g~functions from Q to P. We say that f is a version of P(g)d 
iff f = P(glA)P-as. 

2.1. Main results 

Proposition 1. If p > pc, then all versions of P~(&J.l130) are nonquasilocal on a set of 
configurations with positive Qb-measure. 

Proposition 2. If p # pc, -then there exists a version of Q;(&,,I3:) that is Q;-a.s. 
quasilocal. 

Remark I .  As will be seen from the proof of proposition 1, the first result depends on 
having symmetry-breaking in the low-temperature Potts model. If we were to take, instead 
of the measure Pa'. the symmetric convex combination Pi' of the q/n pure Gibbs measures 
corresponding to family 1, which gives rise to the same measure Q; on the fuzzy variables, 
the proof no longer works. Thus the locality problem in image restoration, as stated in result 
1, appears in the case of undistorted images distributed according to a pure Potts phase. 

3. Connection with the random cluster model 

We review here the connection between Potts and random cluster model [8,6] and extend 
it to the fuzzy Potts model. 

Put p = 1 - As is well known, if p = outside AN, 

(3.1) 

where o is a configuration on the edges e = ( x y )  with either x or y in A N .  To each edge 
e we assign a variable 0, = 1,O. 0, = 1 declares the edge open and U, = 0 declares the 
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edge closed. N I  (w) is the number of open edges in w. No(w) is the number of closed edges 
in w. The partition function Zh is equal to 

where cl(@) counts the number of clusters of w not connected to A;. Two sites x ,  y are 
said to be connected inside a set 5 c A if there is a path via open edges from x to y inside 
E .  A cluster is a maximal set of connected sites. The partition function Zfy is the partition 
function of the wired random cluster measure ph, defined by 

Consider now P i , a .  the measure in AN with free boundary conditions. Then in (3.1) we 
only sum over configurations w on the edges ( x y )  c AN and in (3.2) we must replace CI (0) 
by CO(O) which counts all connected clusters of w. The partition function 2: is thus also 
the partition function of the free random cluster measire pi, defined by 

otherwise. 

We say that a function g on a set (0, l)B is increasing if g(w) 2 ,g(w') whenever w: = 1 
and all e E 5.  The following results are well known implies we = 1 for w ,  w' E {0, 

Fig]. 

Lemma 1. (i) pt and ph have the FKG property, i.e. for increasing functions g, h 

w;kh) 2, &(g)p;(W. (3.5) 

&(g) < &(g) P!&) r P:(g) (3.6) 

(ii) For any increasing function g- 

i f M c N .  
(iii) The weak van Hove limits po : limN & and pI : limN & exist. 

It is also well known that there exists a critical value p&) for p above which there is 
percolation in the state p', * = 1.0, and below which there is no percolation. By percolation 
is meant the almost sure existence of an infinite cluster. Away from the coexistence point, 
po = p1 and there is thus a unique state for the model (because the free and wired boundary 
conditions are exnemal in the FKG sense). Thus po and p1 can only differ at pc(q) ,  and 
indeed they do at high values of q where one can make the connection with a first-order 
transition for the Potts model. 

Expectations of observables in the Potts mode can be expressed via the random cluster 
model as follows: for a function g on the Potts configurations PA", 

P&9(g) = P;@;.&)) (3.7) 

where * = 0.1 and is the average over the Potts variables where the Potts variables 
are constrained to the same value within the same cluster and uniformly distributed over 
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the q possible values for the different clusters not connected to A&. Thus, with PAL = !lh; 

(3.8) 

Here, x cf y stands for the event that x is connected to y and x cf 00 means that for any 
finite set A x  is connected to the complement of A. 

All this is also valid for Potts models on edge-diluted lattices (which we will use later 
on), since we have not used the specific shucture of the lattice. This means that in the 
above p must be replaced by the appropriate pe = 1 - e-pJG with J, = J or J, = 0. The 
following result will be useful (for a proof see [6,9]). 
Lemma 2. Let U;, C: be two possibly inhomogeneous free or wired random cluster measures 
(* = 1 or 0) corresponding to coupling constants J,, .f, respectively for the edges e .  If, for 
all edges e ,  J, > j,, then for all increasing fhctions g: 

V;k) > t3.d. (3.11) 

It is easy to see that for the fuzzy Pomts model, with U A ~  = RA; 

The difference from the full Potts model resides solely in the factor (q/n)e.(w). For a 
function g on a, measurable with respect to 3,, we then have that 

Qh,p(g) = P;U(E;U.,~)). (3.13) 

4. Conditional expectations 

We want to investigate the conditional distribution I-'; (6,~ IFm). Looking-at the Hamiltonian 
(2.1), we see that a fixation of the fuzzy field U in a particular configuration q has the 
following effect. For nearest-neighbour sites x ,  y we have that 

(i) if qx = qy ,  an interaction term 
(ii)~if qx # q y ,  there is no interaction between r, and 2). 

A particular fixation of U thus produces a diluted (because certain edges are just cut) 
q/n-state Potts model with coupling J and inverse temperature ,9 for the z variables. Let 
us denote by F:$ the Potts measnre on the volume AN diluted in the above way via 
the configuration q,  but with 1 boundary conditions. It depends thus only on qAN. Let 
Pa"" = l i m ~  Pi;; (the existence of the limit is standard). 

appears; and 
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Lemma 3. 

where f is the two-point function S.r.ry or f is a (finite) product of such two-point functions. 

Proof. We only prove the first statement. The proof of the second part is analogous. Take 
N > M and let aAM be the exterior boundary of AM. Then 

Here, fi;' is the wired state on the lattice diluted via q .  The first equality is an application 
of (3.9) to the q/n-state Potts model. The inequality holds because of lemma 2. On the 
other hand 

because of lemma 1. The result follows by taking limits over N and M. 

a version of Pj(&z.llFm). 

Proposition 3. If p > pc, then all versions of Pj(8rx,11Fo) are non-quasilocal on a set of 
configurations in S2 of positive QL-measure. 

Proof. If p > pc, then there exists E > 0 

0 

Setting F;(q) = P~.l(S,.l),  which is well defined for all q E S2, (4.1) states that F) is 

We now state our first main result: 

The lkst equality is an instance of formula (3.13). Hence, using lemma 3 we find then that 
for q in a set B of positive Qh-measure 

Now for each configuration q E B, we build one new configuration qN according to the 
following prescription: 

( q N ) x  = q x  

# V y  

if X E AN 
if ( X . Y ) , X  E aAN and Y E AN 

Or X E (An U aAN)c 
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This configuration qN cuts all 5 bonds connecting AN to the rest of the lattice, so 
conditioning on vN leaves us with a diluted q fn-state Potts model on the finite volume 
AN with free boundary conditions. Therefore, 

n 

4 
(4.7) rlN.1 

Pp (&J - - = 0. 

And so, for all configurations q E B, uniformly in ~ N ,  

(4.8) 
It follows that the function Fj is non-quasilocal on B. But since Fj  is only one version of 
Pj(8,.,IFU), we must show that this non-quasilocality~does not disappear if one changes 
the expression for this conditional probability on a set of zero measure. 

5 0, it foUows from the positivity of the finite-set conditional probabilities 
of Qb that also the set 

" I  
~ $ 1 ( 8 r x , ~ )  - p; ' (8rx,i) = F ~ ( v )  - F j ( t l N )  > ' E .  

Since 

BN = { q N  E E B] (4.9) 
carries positive Qa-measure. Suppose now that Gb is another version of P~(Sh,l[Fo). 
Then there exists a set C E R, with Q$) = 1 such that G ) ( q )  = F j ( q )  for all q E C. 
Again due to the positivity of finite-set conditional probabilities the sets ~ . 

d =  [ q  E B n C l q N  E BN nc)  
d,v = [qN E BN n clq E-B n c) 

have positive Qk-measure. The sets d and AN are cons&cted in~such a way that for every 
q E A the configuration qN is a member of d N .  Thus for q E A and uniformly in N 

- GA(qN) > 6. (4.10) 

Thus also Ga is non-quasilocal on a set of positive Qb-measure. This concludes the proof. 0 

We now investigate the conditional expectation Q~(&,J IF,). This conditional probability 
is related to P,(Sr,.l IFc) in the following way. For Qa-&e. q E S2, 

(4.11) 

The factor Z, is a normalization factor depending on q. We can get rid of it by considering 
a ratio of conditional probabilities. For k E (2,. . . , n) 

P$1( ny:(xy)ll + (exP[BJ(8,,.1 -8,y.*J1 - 1 ) 8 r 4  
- -~ (4.12) Qb (8,  .I 13,) ( v )  

Qh(Jmx.*lF:)(tl) $"( I'Iy:by,ll + (exp[BJ(&,,r -~,y.,J1 - O~zy.zxl 

Choosing qx = k we get that for Q)-a.e. q,  

(4.13) 

Observe that the above expression depends only on the expectation of 8,.,, and products of 
such two-point functions. Therefore, this expression will not be sensitive to the~occurrence 
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of a second-order phase transition in the diluted r-system, but only to the occurrence of a 
first-order transition. We need the following lemma. 

Lemma 4. 

C Maes and K Vande Velde 

= 1 Q;(drl)P$o(f) (4.14) 

or f is a (finite) product of such two-point functions. where f is the two-point function 

Proof. Take f ( r )  = 8zr.7, (the rest is analogous). We use the fact that P j  = limN 
where the superscript D stands for disordered boundary conditions. This means that we 
take a configuration outside AN in which at each site the Potts variable differs from all of 
its neighbours. We then proceed as in lemma 3 to get for N > M (with x ,  y in AM) 

The inequality holds because of lemma 1. On the other hand, 

because of lemma 2. The result now follows easily by taking limits over N and M, and 
from the observation that, since 8rx,rp is a local function, for every E > 0, there exists M 
large enough such that 

IP;>(8,,,) - PMJ( n.D o.zy)l < e .  (4.17) 

Lemma 5. Let P;~'(&x,zJ = P;,o(8,,,) for all neighbouring sites n. y E Zd. Then the two 
states PPI and Pa"" also agree on (finite) products of these two-point functions. 

Proof. From the relation between the Potts and the random cluster model, it is easy to 
calculate that for e = ( x y )  

(4.18) 

Thus, because of weak convergence, it follows from the assumption that pn,a(8ae.l) = 
pn,'(8uz.,). It is then a simple application [lo] of the FKG inequality in lemma 1 that the 
two states are equal. Since expectations of products of two-point functions 8rx,rr in the Potts 
model can be expressed as expectations of local functions in the random cluster model, the 
result follows. 0 

We come now to our second main result: 

Proposition 4. There exists a version of QA(8cx,~lF~) that is Qfi-a.s. quasilocal if @ # @.. 
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Pmof. Away from the first-order phase transition for the q-state Potts model, we have that 
4 - n  

P;(&s,TJ - P;(sz..ru) = ( P ' ( X  cf Y) - PO(X tf Y))-~ 
4 

The fist equality is an instance of formula (3.13). Using lemmas 3 and 4 we have that 

pj(&z.zt) - P;(&,,Z,) = 1 P~l(dv){$'l(&z..,) - $'O(&r,.rF)) 

+/ P~(dv)P+?o(S,,,) - / ~ ~ ( d q ) P ~ o ( & ~ , r J  (4.20) 

The sum of the last two terms in the above equation is non-negative by lemma 2. Using the 
fact that Pp1(8rz,ry) - P;O(&x,,) is non-negative by lemma 1, we find then that Qb-as. 

P;l(Sr,,.J - P;,o(8r&) = 0. (4.21) 

For a configuration q define q r  as the configuration that a g e s  with 7 inside AN and is 
identically 1 outside. 7; is then the configuration that agrees with q inside AN and is 
disordered outside. Now by lemma 2 we have that for v, 7' that agree inside A, 

SUP : lP;?8rx.~y) - P+!k%.rJ = SUP /PL;b.l(X tf Y) - cf Y)I 
?)ER $ER 

?;,=lhN ?;,=VAN 

6 &(x U y) - L p ( X  e y) (4.22) 

which as N t cc converges to 

P y ( x  cf Y) - /LL;b.O(X tf Y) = P;l(s,,.,,) - P;0(&r.5) = 0 (4.23) 

for Qi-a.e. 7. Because of lemma 5, we can apply the same argument to products of 8zz,rJ. 
This then proves the almost sure quasilocality of the right-hand side of expression (4.13). 
This is enough to guarantee that the version of Q~(&,s,llF~) constructed in (4.11) as Qk-as. 

Remark 2. Although we cannot prove it, the measure Qb is probably not a Gibbs measure 
for ,3 2 &. The reason for believing this is the following: for typical 7 E Q one is not at 
the coexistence point of the 7-diluted system if p # Bc(q, J )  and quasilocality holds. For 
atypical q,  however, this could be different. An 7 that produces heavy dilution might shift 
the coexistence point of the 7-diluted t-system to a value of ,4 larger than &(q, J ) .  This 
then threatens quasilocality at that particular value of p.  

quasilocal. 0 
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