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The fuzzy Potts model
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Abstract. ‘We consider the ferromagnetic g-state Potts model on the d-dimensional lattice 74,
d > 2. Suppose that the Potts variables {o,,x € Z9) are distributed in one of the q low-
temperature phases. Suppose that # £ 1, ¢ divides ¢. Partitioning the single-site state space
into n equal parts X1, ..., Ky, we obtain 2 new random field & = (o, x € Z) by defining fuzzy'
vatiables oy = o if 9 € Ko, @ = 1,..., n. We investigate the state induced on these fuzzy

- variables. First we look at the conditional distribution of p, given all values oy, y € 74, We find
that below the coexistence point all versions of this conditional distribution are non-guasilocal
on a set of configurations which carmies positive measure. Then we look at the conditional
distribution of ¢, given all values oy, ¥ % x. If the system is not at the coexistence point of a
first-order phase transition, there exists a version of this conditional distribution that is almost
surely guasilocal. ‘ : ' ' :

1. Introduction

The g-state Potts model is a generalization of the Ising model which coincides with it
for g = 2. Tt shows a number of well appreciated features sometimes similar (e.g. in its
stochastic-geometric representation) and sometimes quite dissimilar (e.g. in the nature of
the phase transition for large ) to the Ising model. One of the popular applications of the
Potts model is in the theory of Gibbs sampling and image restoration. It is then sometimes
assumed a priori that the undistorted multi-colour image is distributed according to the
Potts Hamiltonian.

In this paper we are interested in the (distorted) two-colour (or more generally n-
colour) image obtained from the original one in lower resolution, This new ‘fuzzy’ image
is composed of variables that may, for example, be Ising-like (two possible values per site)
but their joint distribution, as inherited from the original variables, may be quite different
from the Ising model. In fact, it may be the casa that the induced measure is not a Gibbs
measure for any quasilocal interaction. A similar example was treated in [1], where the
original model was the massless harmonic crystal and the fuzzy variables were binary,
specifying at each site the sign of the Gaussian spins. There is also a connection with
renormalization group transformations (RG) in the sense that beth in the RG and the fuzzy
description one loses information about the considered measures. It is known that RG can
send Markovian measures into non-Gibbsian measures, lacking the quasilocality property.
To more precise, we take any one of the g low-temperature phases of the Potts model. For
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r # 1, g we investigate the distribuiton induced by it on the variables o specifying to
which of the n families the Potts variable belongs at each site x. We are interested in some
conditional distributions for this model and especially in the question of quasilocality.

First we look at the distribution of the value of the Potts variable at some site x when
we are given the family of which each Potts variable belongs. We find that below the
coexistence point all versions of the conditional distribution are almost surely non-quasilocal.
This means that the expectation value of a Potts variable if we are given the family for
each variable is very sensitive to the knowledge as to which family the variables far away
belong. This is not only relevant for image restoration: from a statistical mechanics point of
view it is interesting to see that the partial information one is given about the system does
not block the phase transition. This indicates & form of robustness for the phase transition.

Then we look at the conditional distribution of o, given all values ay, y # x. If the
system is not at the coexistence point of a first-order phase transition, there exists a version
of this conditional distribution that is almost surely quasilocal. This does not mean that the
induced measure is a Gibbs measure, but it comes close to it [2,3]. For a Gibbs measure
there exists a version of this conditional distribution that is quasilocal everywhere [4,5,2].
In the proofs we make use of the relation of these conditional distributions to those in
edge-diluted Potts models and of the random cluster representations for these models.

The following section contains the model and the main results. Section 3 reviews the
relation of the Potts model with the random cluster model and extends this to the fuzzy
Potts model. Section 4 is devoted to the proof of the main results.

2. Model and main results

In the g-state Potts model on the lattice Z¢, d > 2, one first assigns to each lattice
site x a Potts variable p, with uniform a priori distribution in the single-site state space
K ={1,...,q). The energy of a configuration p.= (0;, x € Z%) is formally given by

H) ==T D Spe.s, @1
{x.y)
where J > 0 is the nearest-neighbour coupling and the sum is over all nearest-neighbour
pairs. 8, 5(=1ifa = b and = 0if a # b) is the Kronecker-delta. Let Ay = [N, N*nZ*
be a cubic region centred around the origin ¢. Let 1 be the Potts configuration in which
T, = 1, x € Z°. The Potts measure at inverse temperature 8 > 0 with 1 boundary conditions
outside A is the probability measure P:{r, g on K% giving weight

Pl p(0) = =1 expl~BIH(p) ~ H(DI) @2)
Zys
to a configuration p coinciding with 1 outside Vy and P;{,_ﬁ(p) = ( otherwise. We refer to
[6] for a discussion of the infinite volume limit limyqes Pjh 5= P.t';' We call this limiting
measure ‘one phase’, because it is an extremal translation invariant measure and because
there is a critical value 8, = B.(g, J) so that for all 8 > B, (and for large ¢ also at 8,)
Pjlpo = 11 > 1/g. Moreover, in this regime there is, with P} probability one, an infinite
nearest-neighbour connected cluster of sites on which the Potts variables take the value 1
[71.
Suppose now that there is an integer n # 1, ¢ dividing ¢. We divide the single-site
state space K into n disjoint parts X, ..., K,, each containing ¢/n elements. This allows
us to define fuzzy variables

Oy =& if p,eKyfora=1,...,n. (2.3)
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We can thus write p, = (ox, ), where o, € {1, ..., n} indicates which family or class o
is in and 7, € {1,..., g/n}). For convenience we assume that &, =.7, = 1 corresponds to
pr = 1. Obviously any continuous function of o {0} = o = (03, x € Z¥) is a continuous
- function of the Potts configuration p and we can consider the infinite volume measure Q‘{,

on 2 =1{1,...,n}%" defined by
Qp(A) = P}(B)

for any cylinder set A corresponding to the o variables and
B ={pck¥o(o) € A}

is a cylinder set for the p variables,

For a configuration 5 € £2 define na = {ny : x € A}. Let us denote by F the ¢-algebra
of events depending only on the values of the ¢ variables. F denotes the sub-o-algebra of
events in F, not depending on ¢, We recall the definition of pointwise quasilocality [3].

Definition 1, We call a real-valued function g on Q quasilocal at x iff for any € > 0, there
exists a finite region A C Z? such that

sop gty —gm < e ‘ ' 24)
EA"TM .
Definition 2. Let P be a probability measure on a probabﬂlty space (2, F). Let Abe a

sub-o-algebra of F and f, g functions from £ to R. We say that f is a version of Pig)A
iff f=Pg|ld)P—as.

2.1. Main results

Proposition I. If 8 > B., then all versions of PJs (8z,.1|1F-) are non-quasilocal on a set of
configurations with positive Qﬂ-measure

Proposition 2. If B # B, then there exists a version of Q}g(é‘a;‘ﬂ}'j) that is Q}g-a.s.
quasilocal.

Remark 1. As will be seen from the proof of proposition I, the first result depends on
having symmetry-breaking in the low-temperature Potts model. If we were to take, instead
of the measure Pﬁl, the symimetric convex combination P;,I of the ¢ /r pure Gibbs measures
corresponding to family I, which gives rise to the same measure Q}s on the fuzzy variables,
the proof no longer works. Thus the locality problem in image restoration, as stated in result
1, appears in the case of undistorted images distributed according to a pure Potts phase,

3. Connection with the random cluster model

We review here the connection between Potts and random cluster model [8, 6] and extend

it to the fuzzy Potts model.
Put p =1 —e?/. As is well known, if p = 1 outside Ay,
1 : .
Py p(p) = — > - ph@phiar TT s, -G
N w e=ixy) -

=1

where w is a configuration on the edges ¢ = {xy} with either x or ¥ in Ay. To each edge
e we assign a variable w, = 1,0. @, = 1 declares the edge open and w, =  declares the
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edge closed. Ny(w) is the number of open edges in w. Ng(w) is the number of closed edges
in . The partition function Z}, is equal to

zZl = Z pNI (w)(l _.p)No(w)qclia)) (3.2)
)

where ¢;(w) counts the number of clusters of w not connected to A%. Two sites x, y are
said to be connected inside a set B C A if theze is a path via open edges from x to y inside
B. A cluster is a maximal set of connected sites. The partition function Z}, is the partition
function of the wired random cluster measure 1}, defined by

1 M N
— pM@ (1 — pyMele) ger(e) if w =1fore C Af
un@) =1 Zy e Ty

0 otherwise.

Consider now Pj?,‘ﬂ, the measure in Ay with free boundary conditions. Thenr in (3.1) we
only sum over configurations o on the edges (xy) C Ay and in (3.2) we must replace c({w)
by co(w) which counts all connected clusters of w. The partition function ZJ, is thus also
the partition function of the free random cluster measure ug., defined by

LY M y
— P (1 — gy ge if w, = 0 for e N A%, # @
W@y =14 Z% ) v (34)

¢ otherwise.

We say that a function g on a set {0, 1}? is increasing if g(w) > g(w') whenever o, =1
implies w, = 1 for @, @' € {0, 1}%, and all ¢ € B. The following results are well known
[6,9].

Lemma 1. (i) M?q and u}, have the FKG property, i.e. for increasing functions g, &

un(gh) 2 pn @y (). (3.5)

(i) For any increasing function g~

K@) <uy@)  nide) 2 pi(®) (3.6)

ifM<N.
(iii) The weak van Hove limits 4° : limy u% and g} : limy ), exist.

It is also well known that there exists a critical value p.(g} for p above which there is
percolation in the state w*, * = 1, 0, and below which there is no percolation. By percolation
is meant the almost sure existence of an infinite cluster. Away from the coexistence point,
p® = w! and there is thus a unique state for the model (because the free and wired boundary
conditions are extremal in the FKG sense). Thus ©® and x! can only differ at p.(q), and
indeed they do at high values of g where one can make the connection with a first-order
transition for the Potts model.

Expectations of observables in the Potts mode can be expressed via the random cluster
model as follows: for a function g on the Potts configurations p,,,

Py 5(2) = un By, (&) (3.7)

where # =0, 1 and E},  is the average over the Potts variables where the Potts variables
ate constrained to the same value within the same cluster and uniformly distributed over
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the g possible values for the different clusters not connected to A%,. Thus, with oag, = lag,

B @@ =g gor) ] %oe (3.8)
Phy e=(xy)CAN:
we=I
E}\’,q (g)(ﬁ‘)) = q_CI(w) Zg(pﬁn) H é‘ﬁzvﬂ'y‘
Pay e=(xyINAystE

ae=1

The following relations follow from (3.7) (for a proof see {6]):
' 1
P (?__l(qap;.l - 1)) =ulxr e 0) (3.9

P (2@~ 1) =07 0. 310
Here, x <> y stands for the event that x is connected to y and x < 0o means that for any
finite set Ax is connected to the complement of A.

All this is also valid for Potts models on edge-diluted lattices {which we will use later
on), since we have not used the specific structure of the lattice. This means that in the
above p must be replaced by the appropriate p, = 1 — e with J, = J or J, = 0. The
following result will be useful (for a proof see [6, 9]).

Lemma 2. Let vy, 3 be two possibly inhomogeneous free or wired random cluster measures

(x==1lor() corres:ponding to coupling constants J,, fe respectively for the edges e. If, for
all edges e, J, > J,, then for all increasing functions g:

vi(g) = 04 (e). ' G.11)

It is easy to see that for the fuzzy Potts model, with g, = Har,

1
Oy plo) = 7 EH((I — P) + PospoyOr.z,)

T {xy)

1
= E:- Z(] —_ p)Ml(w)pN!(w)(q/n)Ct(w) 1_[ 30_2‘0}- (3.12)
N w e, =1
The difference from the full Potts model resides solely in the factor (g/n)*-?’. For a
function g on €2, measurable with respect to #,,, we then have that

O 5(8) = w3 (Ex (). (3.13)

4, Conditional expectations

We want to investigate the conditional distribution Pj (8z,.11F,). Looking at the Hamiltonian
{2.1), we see that a fixation of the fuzzy field ¢ in a particular configuration 7 has the
following effect. For nearest-neighbour sites x, y we have that '

(i) if 9, = ny, an interaction term &, ., appears; and

(iiy if nx 3 ny, there is no interaction between 7, and 7,.

A particular fixation of ¢ thus preduces a diluted (because certain edges are just cut)
g /n-state Potts model with coupling J and inverse temperature 8 for the = variables. Let .
us denote by P;'jg the Potts measure on the volume Ay diluted in the above way via
the configuration n, but with 1 boundary conditions. It depends thus only on n,,. Let

Pg‘] = limy Pﬁ}s (the existence of the limit is standard).
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Lemma 3.
ICEY F AT R @.1)

Pk [ hamep' ) 42)

where f is the two-point function &, ¢, or f is a (finite) product of such two-point functions.

Proaf. We only prove the first statement. The proof of the second part is analogous. Take
N > M and let A be the exterior boundary of Ajy. Then

f Qilv.,a(dﬂ)Pn’?:a(arx.l) = f Q}v‘ﬁ(dn),uﬁ;l (x <> 8AM)q LS g
< [ Gluptonuiicc o e J OIS
= P}y p(8c,.1). 43

Here, ,u,"&f is the wired state on the lattice diluted via #. The first equality is an application
of (3.9) to the g/n-state Potts model. The inequality holds because of lemma 2. On the
other hand

-n n
[ @ sanriyeun = [ ol sennite o onnT"+ 2
q
—n n
> [ Ok pemul x> 24w 4l | ok @npien
= Py (Ee) “4)
because of lemma 1. The result follows by taking limits over N and M. O

Setting Fj{n) = Pg'l(én,l), which is well defined for all 7 € Q, (4.1) states that F} is
a version of Pf} (8z,.11Fa).
We now state our first main result:

Proposition 3. If § > B, then all versions of Pg (8¢,.11F5) are non-quasilocal on a set of
configurations in 2 of positive Q}s-measure.

Proaf. If B > B, then there exists ¢ > 0

- 1 -
P}(8e,1) — g =plx o oo)i.q_” (Pg(a,,bl) - 3) 177 se (4.5)

qg—1
The first equality is an instance of formula (3.13). Hence, using lemma 3 we find then that
for 5 in a set B of positive Q};-measure

PP ) — g > €. 4.6)
Now for each configuration n € B, we build one new configuration ¥ according to the

following prescription:

(1) = s ifxeAy or x € (Ay UdAy)
# iy if (x,y),x €Ay and y € Ay
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This configuration #"¥ cuts all v bonds connecting Ay to the rest of the lattice, so
conditioning on nY leaves us with a diluted g/n-state Potts model on the finite volume
Ay with free boundary conditions. Therefore,

N 7
Py (60) - 2-° : %)
And so, for all configurations i € B, uniformly in N,
P Get) =PI Gr) = FY(m) — FJa™) >'e. (4.8)

It follows that the function Fﬂ1 is non-quasilocal on 5. But since Fé is only one version of

Pﬁ} (82,.11F«), we must show that this non-quasilocality does not disappear if one changes
the expression for this conditional probability on a set of zero measure.
Since OF 8 (B) > 0, it follows from the p051t1v1ty of the finite-set conditional probabilitics

of O} 5 that also the set
By ={n" e Qn e B} (4.9)

carries positive Q,’e-measure. Suppose now that G}, is another version of P‘E} (81 Fo)

Then there exists a set C € £, with Q4(C) = 1 such that Gy(n) = Fi(x) for all n € C.
Again due to the positivity of finite-set conditional probabilities the sets

A=neBnlyY e BynC}

Ay =7V e By NClnp e BNC}
have positive Qé—measure. The sets .A and Ay are constructed in such a way that for every
- n € A the configuration iV is 2 member of Ay. Thus for n € A and uniformly in N

Ghm) — GLo™) > e. (4.10)
Thus also G,ls is non-quasilocal on a set of positive Qé-measure. This concludes the proof. O

We now investigate the conditional expectation Q}, (8,11 F%). This conditional probability
is related to Pg(3y,.1|%,) in the following way. For Qj-a.e. 7 € 2,

036, 17 = - g-i(exp |67 5 @t = 500054 )
7

yrixy)
== '1-1( T 10+ (explBT (Bny1 ~ 89yn )] — 1)3@:,})- (4.11})
y{xw) -

The factor Z,, is a normalization factor depending on n. We can get rid of it by considering
a ratio of conditional probabilities. For k € {2, ...,n}

0tz _ P (Tyinth+ @018 18,001~ 5, )

O Gkl FOY) (4.12)
- T ! ) P;'I(Hy:{,y){l + (explB T By i — S7yni)] N 1)31,».:;})
Choosing #; = k we get that for Q};—a.c. n,
Q86,1175 )(n) ( ' )

=F 1+ T(Bgy1 — 8y )] = Dy} ). 413
0L 7 F yﬂ”{ (explBJ (8,1 — 8y )] = Dz} @13)

Observe that the above expression depends only on the expectation of &, », and products of
such two-point functions. Therefore, this expression will not be sensitive to the occurrence
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of a second-order phase transition in the diluted z-system, but only to the occurrence of a
first-order transition. We need the following lemma.

Lemma 4.
20 = [ 03 e | @.14)

where f is the two-point function 8., or f is a (finite} product of such two-point functions.

Proof. ‘Yake f{r} = &, ., (the rest is analogous). We use the fact that Pfg’ = limy Pg;", P
where the superscript D stands for disordered boundary conditions. This means that we
take a configuration outside Ay in which at each site the Potts variable differs from all of
its neighbours. We then proceed as in lemma 3 to get for ¥ > M (with x, y in Ay)

[ 08 @ Pi6ns) = [ OF pennils nit+l
< [ o8 @i - e [ 08 p@nriSens). @i

The inequality holds because of lemma 1. On the other hand,

f Qﬁ'.ﬁ(dn)Pﬂry?ﬁ(‘sfx-T) = [ Qﬁ,ﬁ(d??)#ﬂ},}o(x < y)g—;———{l- + %

< f Qﬂ.ﬁ(dn)u'}}o(x < y)q ;n +§ = f Q% s(dm)P gr'.oﬂ(‘?rx.ry) (4.16)

because of lemma 2. The result now follows easily by taking limits over & and M, and
from the observation that, since 81, is a local function, for every € > 0, there exists M
large enough such that

|Py (o) — Prip ez < & 4.17)
O
Lemma 5. Let P (8;, =) = P}°(8, ,) for all neighbouring sites x, y € Z¢. Then the two
states Pg‘l and P;'o also agree on (finite) products of these two-point functions.

Progf. From the relation between the Potts and the random cluster model, it is easy to
calculate that for e = (xy}

il But) = PPl (e m,)
13 Gupt) = PPy 360 m)-

Thus, because of weak convergence, it follows from the assumption that m-ﬂ(aa,,, 1) =
u™1(8y,.1). It is then a simple application [10] of the FKG inequality in lemma 1 that the
two states are equal. Since expectations of products of two-point functions &, r, in the Potts
model can be expressed as expectations of local functions in the random cluster model, the
result follows. O

(4.18)

We come now to our second main result:

Proposition 4. There exists a version of Q,Is (8o, 1 [FE) that is Q},-a.s. quasilocal if g # B..
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Proof. Away from the first-order phase transition for the g-state Potts model, we have that
’ —n
PiBs) — PRGosy) = ('@ + 3) — u0(x yn‘f—q—-

=(P;(ap,.py)—chapx.me—:?=o._ N CRIS)

The first equality is an instance of formula (3.13). Using lemmas 3 and 4 we have that

Pi(8y.r) — PRs,.z) = f PHAN(PY Brn) = PIO(6))

+ [ Benpg6.) - [ PR PY ). (4.20)
The sum of the last two terms in the above equation is non-negative by lemma 2. Using the
fact that Pg'](&;,q) — P,;"“’(arx_ry) is non-pegative by lemma I, we find then that Qé-a.s.

P} (ber) — P3°(6sn) = 0. @21

For a configuration 7 define »{' as the configuration that agrees with » inside Ay and is
identically 1 outside. nf is then the configuration that agrees with % inside Ay and is
disordered outside. Now by lemma 2 we have that for 5, %' that agree inside Ay

sup 1 (PP @ng) — PY M Grn)l = sup (ull(x e ) — pfl(x )
el 7ef?
Wy =y . Tay =y
.1 .1
g x ey —pg (x4 y) 4.22)
which as N 1+ oc converges to
wp o y) — ul'x o ¥y = PP Grr) — Pi%(6) =0 - (4.23)

for Q}g-a.e. 7. Because of lemma 5, we can apply the same argument to products of &7, .
This then proves the almost sure quasilocality of the right-hand side of expression (4.13).
This is enough to guarantee that the version of Q}(8,,,1| %) constructed in (4.11) as Qj-ass.
quasilocal.

Remark 2. Although we cannot prove it, the measure Q‘{g is probably not a Gibbs measure
for 8 2 B.. The reason for believing this is the following: for typical # £ 2 one is not at
the coexistence point of the n-diluted system if 8 # B.{g, J) and quasilocality holds. For
atypical n, however, this could be different. An » that produces heavy dilution might shift
the coexistence point of the n-diluted t-system to a value of § larger than §.(g, /). This
then threatens quasilocality at that particular value of 8.
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